Tin-119 N.M.R. Investigation of [Ru(SnCl₃)₆]^{4−}; Large Two-bond Tin–Tin Coupling Constant between *trans*-Disposed Ligands

Hiroshi Moriyama, Toshiya Aoki, Sumio Shinoda, and Yasukazu Saito*

Institute of Industrial Science, University of Tokyo, 22-1, Roppongi 7 Chome, Minato-ku, Tokyo 106, Japan

¹¹⁹Sn Fourier transform n.m.r. studies of $[Ru(SnCl_3)_6]^{4-}$ have revealed its stereochemical rigidity and a large two-bond tin–tin coupling constant, ${}^{2}J({}^{119}Sn-{}^{117}Sn)$, for the *trans*-disposed trichlorostannato ligands, the reduced value of which, ${}^{2}K(SnSn)_{trans}$, 806.0 \times 10²¹ cm⁻³, is the largest among analogous transition metal–tin complexes.

We have shown recently that Fourier transform ¹¹⁹Sn n.m.r. spectroscopy elucidates clearly the co-ordination number of the trichlorostannato ligand and the stereochemical fluxionality of rhodium-tin complexes in hydrochloric acid solution.¹ Herein we report on the ¹¹⁹Sn n.m.r. spectrum of a yellow solution of $RuCl_3 \cdot 3H_2O$ and a 10 fold amount of $SnCl_2 \cdot 2H_2O$ in 3 M hydrochloric acid (Figure 1).

The well resolved spectrum shows the diamagnetic nature of

Table 1. 119Sn N.m.r. data for some transition metal-tin complexes.

	Complex	δ(¹¹⁹ Sn)/p.p.m.	² J(¹¹⁹ Sn- ¹¹⁷ Sn)/Hz
d ⁶	[Ru(SnCl ₃) ₆] ⁴⁻	-34.6ª	2 364 ^a (cis)
			12 862 ^a (trans)
d ⁶	[Rh(SnCl ₃) ₃ Cl ₃] ³⁻	-411.1 ^b	2 804 ^b
d ⁸	Rh(SnCl ₃) ₅] ⁴⁻	8.5 ^b	3 б34ъ
d ⁸	$[Pt(SnCl_3)_5]^3-$	-142°	6 230°
		-133.4 ^d	6 387ª
d ⁸	$[Pt(SnCl_3)_2Cl_2]^{2-}$	-387°	2 485°

Figure 1. ¹¹⁹Sn N.m.r. spectrum of $[Ru(SnCl_3)_6]^{4-}$ at 25 °C, accumulated with a 90° pulse and 1.0 s interval at 33.34 MHz after mixing the solution for 1 day. Chemical shifts are referred to Me₄Sn.

the solution. The rapid reduction of ruthenium(III) by tin(II) chloride is evident by the fact that the corresponding amount of free Sn^{1V} species is always present in the solution.

The spectrum consists of one main peak, two types of satellite peak with a relative intensity of 4:1, and a foldingback signal due to the excess amount of free tin(II) chloride. The spectra for the same sample at elevated temperatures showed that neither intra- nor inter-molecular scrambling occurred at least up to 70 °C (Figure 2). Stereochemical rigidity of the ruthenium(II)-tin(II) complex is in sharp contrast with the fluxional behaviour of the isoelectronic rhodium(III)-tin(II) complexes.¹

The observed relative intensity of the satellite peaks compared with the main peak (21.8%) agrees well with the value

Figure 2. ¹¹⁹Sn N.m.r. spectra of $[Ru(SnCl_3)_6]^{4-}$ at elevated temperatures. The sample and the n.m.r. conditions are the same as for Figure 1.

(22.4%) calculated statistically from the natural abundances of ¹¹⁹Sn (8.6%) and ¹¹⁷Sn (7.6%) nuclei in hexakis (tin) complexes. Moreover, an octahedral structure is deduced from the satellite intensity ratio of 4:1. [NMe₄]₄[Ru(SnCl₃)₆] was isolated and identified from the solution.²

Table 1 summarizes the tin chemical shifts and the two-bond tin-tin coupling constants studied for analogous transition metal-tin complexes. ${}^{2}J(\text{SnSn})_{trans}$ of $[\text{Ru}(\text{SnCl}_{3})_{6}]^{4-}$ is not only significantly larger than ${}^{2}J(\text{SnSn})_{cis}$, but is also the largest among these complexes.[†]

 ${}^{2}J(XY)$ values of transition metal complexes for various nuclei are shown in Table 2. Since the reduced spin-spin coupling constant, $K(XY) = (2\pi/\hbar\gamma_X\gamma_Y) \cdot J(XY)$, is more appropriate as a comparison of the magnitude of different nuclei, the calculated ${}^{2}K$ values are also listed. The reduced two-bond coupling constant between the *trans*-disposed tin ligands is the largest.

In view of the predominant contribution of the Fermi contact interaction to nuclear spin-spin coupling in transition metal complexes,³ the bonding properties of the Sn^{II}-M-Sn^{II}

† In transition metal-tin-phosphine complexes, larger ²J-(SnSn)_{trans} values are known; P. S. Pregosin, *Chimia*, 1981, 35, 49

Table 2. Two-bond nuclear spin-spin coupling constants between various nuclei in transition metal complete	lexes.
---	--------

x	Y	² J(XY) _{cis} /Hz	$^{2}K(XY)_{is}$ /10 ²¹ cm ⁻³	² J(XY) _{trans} /Hz	² K(XY) _{trans} /10 ²¹ cm ⁻³	Ref.
¹³ C	¹³ C	3.2	(0.42)	35	(4.6)	a
³¹ P	ιH	-17.5	(-0.36)	+158.5	(+3.26)	b
³¹ P	¹³ C	9	(0.74)	104	(8.50)	b
³¹ P	^{15}N	3	(0.61)	61	(12.4)	ъ
³¹ P	¹⁹ F	31.6	(0.69)	140	(3.06)	b
³¹ P	³¹ P	-8.0	(-0.41)	+610	$(+30.9)^{2}$	b
³¹ P	^{119,117} Sn ^e	214	(12.1)	4 188	(235.9)	ъ
³¹ P	¹¹⁹ Hg	397	(45.6)	3 879	(445.9)	р
119Sn	ιΗ		(—)	1 740	(38.8)	с
119Sn	117Sn	2 364	(148.1)	12 862	(806.0)	đ

^a ${}^{2}J_{cts}$: S. Aime and D. Osella, J. Chem. Soc., Chem. Commun., 1981, 300; ${}^{2}J_{trans}$: M. Tachikawa, S. I. Richter, and J. R. Shapley, J. Organomet. Chem., 1977, **128**, C9. ^b Ref. 3, p. 114. ^o K. A. Ostoja Starzewski, H. Ruegger, and P. S. Pregosin, Inorg. Chim. Acta, 1979, **36**, L445. ^d This work. ^e Average of ¹¹⁹Sn and ¹¹⁷Sn nuclei.

Received, 14th January 1982; Com. 034

References

- 1 H. Moriyama, T. Aoki, S. Shinoda, and Y. Saito, J. Chem. Soc., Dalton Trans., 1981, 639.
- 2 T. Kimura, M. Shima, K. Mizumachi, and T. Ishimori, 30th National Meeting of Co-ord. Chem., Tokyo, 1980, Abstr., No. 2A03.

- 3 P. S. Pregosin and R. W. Kunz, ^{'31}P and ¹³C N.M.R. of Transition Metal Phosphine Complexes,' Springer-Verlag, Berlin, 1979.
- 4 R. V. Lindsey, Jr., G. W. Parshall, and U. G. Stolberg, J. Am. Chem. Soc., 1965, 87, 658.
- 5 B. R. James, 'Homogeneous Hydrogenation,' Wiley, New York, 1973, p. 327.
- 6 M. Garralda, V. Garcia, M. Kretschmer, P. S. Pregosin, and H. Ruegger, *Helv. Chim. Acta*, 1981, **64**, 1150; references therein.
- 7 H. Moriyama, T. Aoki, S. Shinoda, and Y. Saito, J. Chem. Soc., Perkin Trans. 2, 1982, 369.
- 8 H. B. Buergi, R. W. Kunz, and P. S. Pregosin, *Inorg. Chem.*, 1980, **19**, 3707.
- 9 Y. Koie, S. Shinoda, and Y. Saito, Inorg. Nucl. Chem. Lett., 1981, 17, 147.
- 10 Y. Koie, S. Shinoda, and Y. Saito, Inorg. Chem., 1981, 20, 4448.